Table Of Contents (3 Articles)
Personalized 3D-printed bone plates in fracture management: recent advances and future perspectives
This review examines recent advances and applications of three-dimensional (3D) printing technology in orthopedic fracture management, with a particular focus on its transformative role in personalized treatment strategies. The introduction of patient-specific ...
More.This review examines recent advances and applications of three-dimensional (3D) printing technology in orthopedic fracture management, with a particular focus on its transformative role in personalized treatment strategies. The introduction of patient-specific 3D-printed implants and fracture plates has markedly improved surgical outcomes by reducing operative time, enhancing anatomical alignment, and promoting bone healing. By enabling the fabrication of customized implants, 3D printing provides an innovative approach for managing complex fractures and bone defects, particularly in cases where conventional methods are inadequate. Key benefits discussed include the development of tailored fracture plates, bone scaffolds, and bioactive materials that support bone regeneration. The review also explores the potential of emerging technologies such as four-dimensional printing and bioprinting, which allow for the creation of dynamic implants capable of adapting to biological changes and facilitating tissue regeneration. In addition, the integration of artificial intelligence into preoperative planning and implant design is highlighted for its contribution to improving surgical precision and individualized treatment. This review consolidates the latest advancements while also addressing challenges, including high production costs and regulatory barriers, that must be overcome for widespread clinical adoption. In conclusion, the future of orthopedic fracture management is expected to be significantly reshaped by the continuous evolution of 3D printing technologies, offering more personalized, effective, and efficient solutions for patients. As these innovations progress, 3D printing is anticipated to play a pivotal role in advancing orthopedic surgery and ultimately improving patient outcomes.
Less.Wenchuan Li
DOI:https://doi.org/10.70401/bmeh.2025.0005 - September 16, 2025
Progress in the flexible and stretchable epidermal electrodes for wearable ECG monitoring
As the primary skin-contact interface in wearable electrocardiograph (ECG) devices, epidermal electrodes play a pivotal role in determining both signal quality and biocompatibility. With continuous advancements in materials science and structural engineering, ...
More.As the primary skin-contact interface in wearable electrocardiograph (ECG) devices, epidermal electrodes play a pivotal role in determining both signal quality and biocompatibility. With continuous advancements in materials science and structural engineering, next-generation flexible and stretchable bioelectrodes have emerged, enabling long-term ECG monitoring and offering superior signal-to-noise ratios compared to conventional clinical electrodes. Their performance in ensuring reliable signal acquisition and user comfort is primarily governed by key interfacial mechanical and electrical properties, including mechanical compliance (i.e., flexibility and stretchability), interfacial adhesion (i.e., conformability and adhesion strength), and electrical characteristics (i.e., contact impedance). In recent years, significant progress has been made in enhancing the signal acquisition capabilities of flexible and stretchable bioelectrodes by optimizing these critical interfacial attributes. This review highlights the latest advances in conformable epidermal electrodes, encompassing traditional wet electrodes, flexible dry electrodes, novel dry electrodes based on organic electrochemical transistors, and integrated wearable systems. We systematically examine strategies for improving skin-electrode interface performance in ECG monitoring. Finally, we discuss ongoing challenges and future directions to advance epidermal electrode technologies for next-generation wearable healthcare applications.
Less.Junfei Ji, ... Lei Zhang
DOI:https://doi.org/10.70401/bmeh.2025.0004 - August 06, 2025
The gel effect: Enhancing diabetic foot ulcer healing through hydrogel innovations
Diabetic foot ulcers (DFUs) are a serious complication of diabetes and often result in amputation. Traditional wound care methods have limitations in addressing the complex pathophysiology of DFUs. Hydrogel dressings, a type of biomaterial, have emerged ...
More.Diabetic foot ulcers (DFUs) are a serious complication of diabetes and often result in amputation. Traditional wound care methods have limitations in addressing the complex pathophysiology of DFUs. Hydrogel dressings, a type of biomaterial, have emerged as promising candidates for treating DFUs due to their biocompatibility, ability to retain moisture, and potential to incorporate therapeutic agents. Hydrogels create a moist environment, promote cell migration, and reduce inflammation, thereby supporting wound healing. Incorporating bioactive molecules, such as growth factors and anti-inflammatory agents, can further enhance the effectiveness of hydrogels. Additionally, stem cells can be loaded into hydrogels to improve tissue regeneration and help modulate the wound microenvironment. Recent advancements in hydrogel technology have also led to the development of smart hydrogels that can respond to changes in wound conditions, such as glucose levels and pH. These intelligent dressings offer personalized care by delivering targeted treatments based on real-time wound data. This review explores the mechanisms behind DFU development, the role of hydrogels in wound healing, and recent progress in hydrogel technologies for personalized DFU care.
Less.Ghadeer Almarzooq, ... G. Roshan Deen
DOI:https://doi.org/10.70401/bmeh.2025.0003 - May 28, 2025