Empathic extended reality in the era of generative AI
-
Aims: Extended reality (XR) has been widely recognized for its ability to evoke empathetic responses by immersing users in virtual scenarios and promoting perspective-taking. However, to fully realize the empathic potential of XR, it is necessary ...
MoreAims: Extended reality (XR) has been widely recognized for its ability to evoke empathetic responses by immersing users in virtual scenarios and promoting perspective-taking. However, to fully realize the empathic potential of XR, it is necessary to move beyond the concept of XR as a unidirectional “empathy machine.” This study proposes a bidirectional “empathy-enabled XR” framework, wherein XR systems not only elicit empathy but also demonstrate empathetic behaviors by sensing, interpreting, and adapting to users’ affective and cognitive states.
Methods: Two complementary frameworks are introduced. The first, the Empathic Large Language Model (EmLLM) framework, integrates multimodal user sensing (e.g., voice, facial expressions, physiological signals, and behavior) with large language models (LLMs) to enable bidirectional empathic communication. The second, the Matrix framework, leverages multimodal user and environmental inputs alongside multimodal LLMs to generate context-aware 3D objects within XR environments. This study presents the design and evaluation of two prototypes based on these frameworks: a physiology-driven EmLLM chatbot for stress management, and a Matrix-based mixed reality (MR) application that dynamically generates everyday 3D objects.
Results: The EmLLM-based chatbot achieved 85% accuracy in stress detection, with participants reporting strong therapeutic alliance scores. In the Matrix framework, the use of a pre-generated 3D model repository significantly reduced graphics processing unit utilization and improved system responsiveness, enabling real-time scene augmentation on resource-constrained XR devices.
Conclusion: By integrating EmLLM and Matrix, this research establishes a foundation for empathy-enabled XR systems that dynamically adapt to users’ needs, affective and cognitive states, and situational contexts through real-time 3D content generation. The findings demonstrate the potential of such systems in diverse applications, including mental health support and collaborative training, thereby opening new avenues for immersive, human-centered XR experiences.
Less -
Poorvesh Dongre, ... Denis Gračanin
-
DOI: https://doi.org/10.70401/ec.2025.0009 - June 29, 2025